$\mathcal H$ –Locally closed sets in generalized topological space

P. ELAVARASAN,

Research Scholar, Meenakshi Academy of Higher Education and Research, Chennai, Tamilnadu, India.

A.P.PONRAJ,

Research Supervisor

Abstract

The aim of this paper is extend the study of \mathcal{H} -locally closed sets are defined in a generalized topological space with a hereditary class, characterize this sets and discussits properties and we discuss the properties of \mathcal{H}_A -sets, \mathcal{H}_B -sets, \mathcal{H}_C -sets and $f_{\mathcal{H}}$ -sets. It is established that \mathcal{H}_A -sets are \mathcal{H} -locally closed set and \mathcal{H}_B - sets are \mathcal{H}_C -sets in generalized topological space.

Keywords: Generalized topological space, hereditary class, κ^* -dense set, *semi*^{*} - \mathcal{H} -open set.

2010 Mathematics subject classification: 54A05, 54A10

1. Introduction

Let *X* be a nonempty set. A non-empty subfamily κ of $\wp(X)$ is called a generalized topology on *X* [1] if $\emptyset \in \kappa$ and κ is closed under arbitrary union. The pair (X, κ) is called generalized topological space. Elements of κ are called κ –open sets and the complement of a κ –open set called a κ –closed set. The largest κ –open set contained in a subset *A* of *X* is denoted by $int_{\kappa}(A)$ [3] and is called the κ –interior of *A*. The smallest κ –closed set containing *A* is called the κ – closure of *A* and is denoted by $cl_{\kappa}(A)$ [3].

Throughout the paper, by a space, we always mean a generalized topological space (X, κ) . A subset *A* is said to be κ -dense if $cl_{\kappa}(A) = X$. A hereditary class \mathcal{H} is a non empty family of subset of *X* such that $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}$ [2]. For each subset *A* of *X*, a subset $A^*(\mathcal{H})$ or simply A^* of *X* is defined by $A^*(\mathcal{H}) = \{x \in X | M \cap A \notin \mathcal{H} \text{ for every } M \in \kappa \text{ containing } X\}$ [2]. A generalized topology κ is said to be a quasi-topology [4] on *X* if $M, N \in \kappa$ implies $M \cap N \in \kappa$. If $cl_{\kappa}^*(A) = A \cap A^*$ for every subset *A* of *X*, with respect to κ and a hereditary class \mathcal{H} of subsets of *X* then $\kappa^* = \{A \subset X / cl_{\kappa}^*(X - A) = X - A\}$ is a generalized topology[2]. Elements of κ^* are called κ^* -open sets and the complement of a κ^* -open set is called a κ^* -closed set. $int_{\kappa}^*(A)$ is the interior of A in (X, κ^*) . Let (X, κ) be a generalized topological space and \mathcal{H} be a hereditary class of subsets of *X*. If $cl_{\kappa}^*(A) = X$, then *A* is called κ^* -dense.

Definition 1.1. Let (X, κ) be a generalized topology. A subset A of X is said to be

(*i*) κ – regular closed [2] if $cl_{\kappa}(int_{\kappa}(A)) = A$,

(*ii*) κ – semi open[2] if $A \subset cl_{\kappa}(int_{\kappa}(A))$,

(*iii*) $\kappa - \alpha$ - open [2] if $A \subset int_{\kappa}(cl_{\kappa}(int_{\kappa}(A)))$,

(*iv*)
$$\kappa - \beta - open[2]$$
 if $A \subset cl_{\kappa}(int_{\kappa}(cl_{\kappa}(A)))$,

- (v) $\beta \mathcal{H} \text{open}[3] \text{ if } A \subset cl_{\kappa}(int_{\kappa}(cl_{\kappa}^{*}(A))).$
- (vi) $\alpha \mathcal{H} \text{open}[3] \text{ if } A \subset int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A))),$
- (vii) pre \mathcal{H} open [3] if $A \subset int_{\kappa}(cl_{\kappa}(A))$,
- (viii) semi \mathcal{H} open[3] if $A \subset cl_{\kappa}^{*}$ (int_{κ}(A)),
- (*ix*) κ preopen [3] if $A \subset int_{\kappa}(cl_{\kappa}(A))$.

The family of all κ – *semi open* ($\kappa - \beta$ – *open*, $\alpha - \mathcal{H}$ – *open*) sets is denoted by $\sigma_{\kappa}(\beta_{\kappa}, \alpha \mathcal{H}o(X))$. If $\mu \in \{\kappa, \sigma, \beta, \pi\}$, then int_{μ} and cl_{μ} are respectively, the interior and closure operators with respect to the generalized topology μ .

The complement of a κ – semi open (resp. κ – pre open, $\kappa - \alpha$ – open, $\kappa - \beta$ – open, $\beta - \mathcal{H}$ – open, $\alpha - \mathcal{H}$ – open, pre – \mathcal{H} – open, semi – \mathcal{H} – open) set is said to be a κ – semi closed (resp. κ – pre closed, $\kappa - \alpha$ – closed, $\kappa - \beta$ – closed, $\beta - \mathcal{H}$ – closed, $\alpha - \mathcal{H}$ – closed, pre – \mathcal{H} – closed, semi – \mathcal{H} – closed, semi – \mathcal{H} – closed) sets.

Lemma 1.2. [8] Let (X, κ) be a generalized topological space and \mathcal{H} be a hereditary class of subsets of X. Then \mathcal{H} is κ – codense if and only if $A \subset A^*$ for every $A \in \kappa$.

Lemma 1.3. [3] Let (X, κ) be a generalized topological space and \mathcal{H} be a hereditary class of subsets of *X*. If $A \subset A^*$, then $A^* = cl_{\kappa}(A) = cl_{\kappa}^*(A)$.

Lemma 1.4. [8] Let (X, κ) be a generalized topological space with hereditary class \mathcal{H} . Then the following are equivalent.

- (a) \mathcal{H} is strongly κ codense.
- (b) $M \subset M^*$ for every $M \in \kappa$.
- (c) $S \subset S^*$ for every $S \in \sigma(X)$.
- (d) $cl_{\kappa}(M) = M^*$ for every $M \in \kappa$.

Lemma 1.5. [3] Let (X, κ) be a generalized topological space and $A \subset X$. Then the following hold.

- (a) $int_{\pi}(A) = A \cap int_{\kappa}(cl_{\kappa}(A)).$
- (b) $cl_{\pi}(A) = A \cup cl_{\kappa}(int_{\kappa}(A)).$

Lemma 1.6. Let (X,κ) be a quasi-topological space and \mathcal{H} be a hereditary class of subsets of *X*. If $A \subset X$ and $M \in \kappa$, then the following hold.

- (a) $M \cap A^* \subset (M \cap A)^*$ [8, Theorem 2.6].
- (b) $M \cap cl_{\kappa}(A) \subset cl_{\kappa}(M \cap A)$ [8, Lemma 1.3].

Lemma 1.7. [3] Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $A \subset B \subset X$. Then the following hold.

(a)
$$A^* \subset B^*$$
.

- (b) $A^* \subset cl_{\kappa}(A)$.
- (c) $G \in \kappa, G \cap A \in H$ implies that $G \cap A^* = \emptyset$. Hence $\mathcal{H}^* = X G$ if $\mathcal{H}^* \in \mathcal{H}$.
- (d) A^* is κ closed for $A \subset X$.
- (e) If F is κ closed, then $F^* \subset F$.
- (f) $A^{**} = (A^*)^* \subset A^*$ for every $A \subset X$.
- (g) $X = X^*$ if and only if $\kappa \cap \mathcal{H} = \{\emptyset\}$.

2. \mathcal{H} – Locally closed sets

Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. Then A is \mathcal{H} –locally closed [2] if $A = G \cap V$, where G and V are κ^* –perfect. The following Theorem 2.1 gives a characterization of \mathcal{H} –locally closed sets.

Theorem 2.1. Let (X, κ) be a quasi-topological space and \mathcal{H} be a hereditary class of subsets of *X*. Then the following are equivalent.

- (a) A is a \mathcal{H} –locally closed set.
- (b) $A = U \cap A^*$ for some κ open set U.

Proof: (*a*) \Rightarrow (*b*). If *A* is a \mathcal{H} -locally closed set, then $A = U \cap V$ where *U* is κ - open and *V* is κ^* -perfect. $A = U \cap V$ implies that $A^* = (U \cap V)^*$. By Lemma 1.6(a), $(U \cap V)^* \supset U \cap V^*$. *V* is κ^* -perfect, implies that $A^* = (U \cap V)^* \supset U \cap V^* = U \cap V =$ *A* which implies that $A \subset A^*$. Thus $A \subset V$ implies that $A^* \subset V^* = V$ and so $A^* =$ $A^* \cap V$. Hence $U \cap A^* = U \cap (A^* \cap V) = U \cap V \cap A^* = A \cap A^* = A$.

(b) \Rightarrow (a). Conversely, suppose that $A = U \cap A^*$ for some κ -open set U. Since $A \subset A^*$, byLemma 1.7, $A^* \subset A^{**} \subset A$. Therefore A^* is κ^* -perfect and so A is an \mathcal{H} -locally closed set.

The following Example 2.2 shows that the condition quasi topology on κ cannot be dropped in Theorem 2.1.

Example 2.2. Consider the space (X, κ) with the hereditary class \mathcal{H} where $X = \{1, 2, 3, 4\}, \kappa = \{\emptyset, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ and $H = \{\emptyset, \{2\}, \{4\}\}$. Clearly, κ is not a quasi-topology. If $A = \{2, 3\}$, then $A^* = \{3, 4\}$. Clearly, A is \mathcal{H} – locally closed set. But for every κ –open set $U, A \neq U \cap A^*$.

The following Theorem 2.3 gives a characterizations of \mathcal{H} –locally closed sets.

Theorem 2.3. Let (X,κ) be a quasi-topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of. Then the following are equivalent.

- (a) A is \mathcal{H} –locally closed.
- (b) $A = G \cap A^*$ for some κ open set G.
- (c) $A \subset A^*$ and $A^* A$ is κ -closed.
- (d) $A \subset A^*$ and $A \cap (X A^*)$ is κ -open.
- (e) $A \subset A^*$ and $A \subset int(A \cap (X A^*))$.

Proof: (a) \Rightarrow (b). Follows from Theorem 2.1.

 $(b) \Rightarrow (c)$. Suppose $A = G \cap A^*$ for some κ -open set G. Clearly, $A \subset A^*$ and $A^* - A = A^* \cap (X - A) = A^* \cap (X - (G \cap A^*)) = A^* \cap (X - G)$. Since A^* is κ -closed, by Lemma 1.7(d), $A^* - A$ is κ -closed.

 $(c) \Rightarrow (d)$. $A^* - A$ is κ -closed implies that $A^* \cap (X - A)$ is κ -closed which implies that $X - (A^* \cap (X - A))$ is κ -open. Therefore $A \cup (X - A^*)$ is κ -open.

 $(d) \Rightarrow (e)$ is clear.

 $(e) \Rightarrow (a).$ $X - A^* = int_{\kappa}(X - A^*) \subset int_{\kappa}(A \cup (X - A^*))$ and so $A \cup (X - A^*)$ is κ -open, by hypothesis. Since $A = (A \cup (X - A^*)) \cap A^*$, A is \mathcal{H} -locally closed.

Corollary 2.4. Let (X,κ) be a quasi-topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of. Then the following are equivalent.

- *i.* A is κ^* –dense in itself.
- *ii.* A is κ^* –perfect.
- *iii.* $cl_{\kappa}(A) = cl_{\kappa}^{*}(A) = A^{*}$.

Proof: *i.* Follows from Theorem 2.3.

- *ii.* Follows from (a) and the fact that $(A^*)^* \subset A^*$.
- *iii.* Follows from Lemma 1.3.

The following Theorem 2.5 gives a characterization of \mathcal{H} – locally closed sets.

Theorem 2.5. Let (X, κ) be a quasi-topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. Then A is \mathcal{H} –locally closed if and only if A is locally κ –closed and A is κ^* –dense in itself.

Proof: If *A* is \mathcal{H} –locally closed, then *A* is κ^* –dense in itself and $A = G \cap A^*$ for some $G \in \kappa$. Since A^* is κ –closed, *A* is locally κ –closed. Conversely, if *A* is locally κ –closed, then $A = G \cap F$ where $G \in \kappa$ and *F* is κ –closed. $A \subset F \Rightarrow A^* \subset F \Rightarrow A^* \cap F = A^*$. Now *A* is κ^* –dense in itself implies that $A \subset A^*$ and so $A = A \cap A^* = (G \cap F) \cap A^* = G \cap (F \cap A^*) = G \cap A^*$. Therefore, *A* is \mathcal{H} – locally closed.

The following Example 2.6 shows that κ^* – dense in itself sets need not be \mathcal{H} – locally closed.

Example 2.6. Let $X = \{e, f, g, h\}$, $\kappa = \{\emptyset, \{h\}, \{e, g\}, \{e, g, h\}, X\}$ and $\mathcal{H} = \{\emptyset, \{g\}, \{h\}, \{g, h\}\}$. If $A = \{e\}$, then A is κ^* -dense itself but not \mathcal{H} -locally closed.

Definition 2.7. Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X is said to be an $\alpha_{\mathcal{H}N}$ – set if $A = U \cap V$ where U is $\alpha - \mathcal{H}$ – open, and V is κ^* – closed. We will denote the family of all $\alpha_{\mathcal{H}N}$ – sets denoted by $\alpha_{\mathcal{H}N}(A)$.

Definition 2.8. Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. A is said to be a weakly \mathcal{H} – locally closed set if $A = U \cap V$ where U is κ – open and V is a κ^* – closed set. The family of all weakly \mathcal{H} – locally closed sets is denoted by $W\mathcal{H}LC(X)$.

Clearly, every weakly \mathcal{H} – locally closed set is an $\alpha_{\mathcal{H}N}$ –set but not the converse as shown by the following Example 2.9.

Example 2.9. Consider (X, κ) the quasi topological space where $X = \{p, q, r\}$, $\kappa = \{\emptyset, \{p\}, \{p, r\}, X\}$ and $H = \{\emptyset, \{q\}, \{r\}, \{q, r\}\}$. If $A = \{p, q\}$, then $int_{\kappa} (cl_{\kappa}^{*}(int_{\kappa}(A))) = int_{\kappa} (cl_{\kappa}^{*}(int_{\kappa}(p,q))) = int_{\kappa} (cl_{\kappa}^{*}(p)) = int_{\kappa} (p,q,r)$ $= X \supset A$ and so A is $\alpha - \mathcal{H}$ -open and hence an $\alpha_{\mathcal{H}N}$ -set. But there is no κ -open set U such that $A = U \cap cl_{\kappa}^{*}(A)$ where $cl_{\kappa}^{*}(A) = X$. Hence A is not a

weakly \mathcal{H} –locally closed set.

Theorem 2.10 below gives a characterization of $\alpha_{\mathcal{H}N}$ –sets.

Theorem 2.10. Let (X, κ) be a quasi-topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. Then A is $\alpha_{\mathcal{H}N}$ -set if and only if $A = U \cap cl^*_{\kappa}(A)$ for some $\alpha_{\mathcal{H}N}$ -set U.

Proof: If A is an $\alpha_{\mathcal{H}N}$ -set, then $A = U \cap V$ where U is $\alpha - \mathcal{H}$ -open and V is κ^* -closed. Since $A \subset V$, $cl^*_{\kappa}(A) \subset cl^*_{\kappa}(V) = V$ and so $cl^*_{\kappa}(A) \subset U \cap V = A \subset U \cap cl^*_{\kappa}(A)$ which implies that $A = U \cap cl^*_{\kappa}(A)$.

Conversely, suppose $A = U \cap cl_{\kappa}^*(A)$ for some $\alpha_{\mathcal{H}N}$ – set U. Since $cl_{\kappa}^*(A)$ is κ^* –closed, A is an $\alpha_{\mathcal{H}N}$ –set.

In the following Theorem 2.11, we give the relation of κ^* – perfect, κ – locally closed and κ^* – dense in itself subsets with \mathcal{H} – locally closed subsets.

Theorem 2.11. Let (X, κ) be a quasi-topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. If A is κ^* –perfect, then A is \mathcal{H} –locally closed. The converse is true, if A is κ^* –closed.

Proof: If A is κ^* –perfect, then $A = A^*$ and so $A = X \cap A = X \cap A^*$ which implies that A is \mathcal{H} –locally closed.

Conversely, if *A* is \mathcal{H} –locally closed, then $A \subset A^*$. A is κ^* –closed implies that $A^* \subset A$. Hence $A = A^*$.

3. \mathcal{H}_{A1} and \mathcal{H}_{B1} sets

Definition 3.1. Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X, A is said to be a \mathcal{H}_{A1} -set if $A = U \cap V$ where U is κ -openand $cl_{\kappa}^{*}(int_{\kappa}(V)) = X$. The family of all \mathcal{H}_{A1} -sets is denoted by $\mathcal{H}_{A1}(A)$.

Definition 3.2. Let (X, κ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and A be a subset of X. A is said to be a \mathcal{H}_{B1} -set if $A = U \cap V$ where U is $\alpha - \mathcal{H}$ -open and $cl_{\kappa}^{*}(int_{\kappa}(V)) = X$. The family of all \mathcal{H}_{B1} -sets is denoted by $\mathcal{H}_{B1}(X)$. Clearly, $\mathcal{H}_{A1}(X) \subset \mathcal{H}_{B1}(X)$.

The following Theorem 3.3 shows that \mathcal{H}_{A1} – sets and \mathcal{H}_{B1} – sets are nothing but $\alpha - \mathcal{H}$ – opensets in quasi topological spaces.

Theorem 3.3. Let (X, κ) be a quasi-topological space and \mathcal{H} be a hereditary class of subsets of *X*. Then $\mathcal{H}_{B1}(X) = \alpha \mathcal{H}_{O}(X) = \mathcal{H}_{A1}(X)$.

Proof: Suppose $A \in \mathcal{H}_{B1}(X)$. Then $A = U \cap V$ where U is $\alpha - \mathcal{H}$ -open and $cl_{\kappa}^{*}(\operatorname{int}_{\kappa}(V)) = X$. Thus $V \subset X = \operatorname{int}_{\kappa}(cl_{\kappa}^{*}(\operatorname{int}_{\kappa}(V)))$, since $V \in \alpha \mathcal{H}_{0}(X)$.

Conversely, if $U \in \alpha \mathcal{H}o(X)$, then $U = U \cap X$ where $cl_{\kappa}^{*}(int_{\kappa}(X)) = X$ and so $U \in \mathcal{H}_{B1}(X)$. Hence $\alpha \mathcal{H}o(X) = \mathcal{H}_{B1}(X)$. Next suppose $A \in \alpha \mathcal{H}o(X)$. Then $A \subset int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A)))$ and so

$$A = int_{\kappa} \left(cl_{\kappa}^{*} (int_{\kappa}(A)) \right) \cap \left(X - \left(int_{\kappa} \left(cl_{\kappa}^{*} (int_{\kappa}(A)) \right) - A \right) \right)$$
$$= int_{\kappa} (cl_{\kappa}^{*} (int_{\kappa}(A))) \cap \left((X - int_{\kappa} (cl_{\kappa}^{*} (int_{\kappa}(A)))) \cup A \right)$$

Also,

$$cl_{\kappa}^{*}(int_{\kappa}((X - int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A)))) \cup A)))$$

$$\supset cl_{\kappa}^{*}(int_{\kappa}(X - int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A)))) \cup int_{\kappa}(A)))$$

$$= cl_{\kappa}^{*}\left(int_{\kappa}\left(X - int_{\kappa}\left(cl_{\kappa}^{*}(int_{\kappa}(A))\right)\right)\right) \cup cl_{\kappa}^{*}(int_{\kappa}(A)))$$

$$\supset cl_{\kappa}^{*}\left(int_{\kappa}\left(X - cl_{\kappa}^{*}(int_{\kappa}(A))\right)\right) \cup cl_{\kappa}^{*}(int_{\kappa}(A)))$$

$$\supset int_{\kappa}\left(X - cl_{\kappa}^{*}(int_{\kappa}(A))\right) \cup cl_{\kappa}^{*}(int_{\kappa}(A)))$$

$$\supset int_{\kappa}\left(\left(X - cl_{\kappa}^{*}(int_{\kappa}(A))\right) \cup cl_{\kappa}^{*}(int_{\kappa}(A))\right)\right)$$

$$= int_{\kappa}(X) = X.$$

Therefore, $A \in \mathcal{H}_{A1}(X)$ which implies that $\mathcal{H}_{B1}(X) = \alpha Ho(X) \subset \mathcal{H}_{A1}(X)$. Clearly, $\mathcal{H}_{A1}(X) \subset \mathcal{H}_{B1}(X)$. This completes the proof.

Theorem 3.4. Let (X, κ) be a quasi-topological space with a hereditary class \mathcal{H} . If \mathcal{H} is κ -codense, then every κ -open set is a \mathcal{H} -locally closed set. **Proof:** Suppose that U is κ -open. By Lemma 1.3, $U \subset U^*$ and so $U^* = U^{**}$. Since $U = U \cap U^*$, implies that U is \mathcal{H} -locally closed set.

The following Lemma 3.5 is useful to prove the following Theorem 3.6.

Lemma 3.5. Let (X, κ) be a quasi-topological space with a κ -codense hereditary class \mathcal{H} and A be a subset of X. If A is an \mathcal{H}_{C} - set, then $int_{\alpha-\mathcal{H}}(A) = int_{\kappa}(A)$ where $int_{\alpha-\mathcal{H}}(A)$ is the interior of A with respect to the family of all $\alpha - \mathcal{H}$ -open set $\alpha - \mathcal{H}(X)$.

Proof: Clearly $int_{\alpha-\mathcal{H}}(A) \supset int_{\kappa}(A)$. Since A is an \mathcal{H}_{C} -set, $A = U \cap V$ where U is κ -open and int_{κ} $(cl_{\kappa}^{*}(int_{\kappa}(V))) = int_{\kappa}(V)$. Now $A \subset V$ implies that $int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A))) \subset int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(V)))$ $= int_{\kappa}(V)$. Therefore $int_{\alpha-\mathcal{H}}(A) = A \cap int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(V))) \subset A \cap$

Feb 2022 | 443

 $int_{\kappa}(V) \subset U \cap int_{\kappa}(V) = int_{\kappa}(U \cap V) = int_{\kappa}(A).$ Therefore $int_{\alpha-\mathcal{H}}(A) \subset int_{\kappa}(A)$. Hence $int_{\alpha-\mathcal{H}}(A) = int_{\kappa}(A)$.

Theorem 3.6. Let (X,κ) be a quasi-topological space with a κ -codense hereditary class \mathcal{H} and A be a subset of X. Then the following are equivalent.

- (a) A is κ open set.
- (b) A is an $\alpha \mathcal{H}$ -open set and a \mathcal{H} -locally closed set.
- (c) A is a $pre \mathcal{H}$ -open set and a \mathcal{H} -locally closed set.
- (d) A is a $pre \mathcal{H}$ -open set and an \mathcal{H}_A -set.
- (e) A is a $pre \mathcal{H}$ -open set as well as \mathcal{H}_{c} set and an \mathcal{H}_{A} -set.
- (f) A is a $pre \mathcal{H} open$ set as well as \mathcal{H}_{c} -set and a semi $\mathcal{H} open$ set.
- (g) A is a $pre \mathcal{H}$ -open set as well as $\mathcal{H}_{\mathbb{C}}$ -set and $int_{\kappa}(cl_{\kappa}^{*}(A)) \subset cl_{\kappa}^{*}(int_{\kappa}(A))$.

Proof: $(a) \Rightarrow (b)$. If *A* is κ -open, then *A* is $\alpha - \mathcal{H}$ -open. Since \mathcal{H} is κ -codense, by Lemma 1.2, $A \subset A^*$ and so $A = A \cap A^*$. Therefore by Theorem 2.3, *A* is an \mathcal{H} -locally closed set.

 $(b) \Rightarrow (c)$. Follows from the fact every $\alpha - \mathcal{H}$ –open set is $pre - \mathcal{H}$ –open set.

 $(c) \Rightarrow (d)$. If A is an \mathcal{H} -locally closed set then, by Theorem 3.3, $A = G \cap A^*$ for some κ -open set G. Since $A \subset A^*$, $A^* = cl_{\kappa}^*(A)$. Also A is a $pre - \mathcal{H}$ -open set implies that $A \subset int_{\kappa}(cl_{\kappa}^*(A)) = int_{\kappa}(A^*)$ and so $A^* \subset (int_{\kappa}(A^*))^* \subset (A^*)^* \subset A^*$. Therefore $A = (int_{\kappa}(A^*))^*$. Hence $A = G \cap A^*$ for some κ -open set G and $A^* = (int_{\kappa}(A^*))^*$ and so A is an \mathcal{H}_A - set.

 $(d) \Rightarrow (e). \text{ If } A \text{ is an } \mathcal{H}_{A} - \text{set, then } A = G \cap V \text{ where } G \text{ is } \kappa - \text{open and}$ $V = (int_{\kappa}(V))^{*}. \text{ Now } int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(V))) = int_{\kappa}(int_{\kappa}(V) \cup (int_{\kappa}(V))^{*})$ $= int_{\kappa}(int_{\kappa}(V) \cup V) = int_{\kappa}(V). \text{ Therefore, } A \text{ is a } \mathcal{H}_{C} - \text{set.}$

 $(e) \Rightarrow (f).$ If A is an \mathcal{H}_{A} -set, then $A = U \cap V$ where U is κ -open and $V = (int_{\kappa}(V))^{*}$. Now $A = U \cap V = U \cap (int_{\kappa}(V))^{*} \subset (U \cap int_{\kappa}(V))^{*} = (int_{\kappa}(U \cap V))^{*} = (int_{\kappa}(A))^{*} \subset cl_{\kappa}^{*}(int_{\kappa}(A))$ and so A is a semi- \mathcal{H} -open.

 $(f) \Rightarrow (g).$ If A is a $semi - \mathcal{H} - open$, then $A \subset cl_{\kappa}^{*}(int_{\kappa}(A)).$ Now $int_{\kappa}(cl_{\kappa}^{*}(A)) \subset int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A)))) = int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A))) = cl_{\kappa}^{*}(int_{\kappa}(A)).$ Therefore $int_{\kappa}(cl_{\kappa}^{*}(A)) \subset cl_{\kappa}^{*}(int_{\kappa}(A)).$

 $(g) \Rightarrow (a).$ Since A is $pre - \mathcal{H} - open$ set, $A \subset int_{\kappa}(cl_{\kappa}^{*}(A)) = int_{\kappa}(int_{\kappa}(cl_{\kappa}^{*}(A))) \subset int_{\kappa}(cl_{\kappa}^{*}(int_{\kappa}(A)))$ and so A is $\alpha - \mathcal{H} - open$ set and so $int_{\alpha - \mathcal{H}}(A) = A$. By Lemma 3.5, it follows that $int_{\kappa}(A) = A$ and so A is κ -open.

References

A.Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar, 96(2002),351 -357.

A. Csaszar, Generalized Open Sets , Acta Mathematica Hungaria., 75(1-2)(1997), 65 - 87.

A.Csaszar, Modifications of generalized topologies via hereditary classes, Acta Math. Hun-gar., 115(2007) 29 - 36.

A.Csaszar, Remarks on quasi-topologies, Acta Math. Hungar., 119(1-2)(2007), 197 - 200.

R.Shankar, A.P. Ponraj and D. Sivaraj Weakly semi-H-open sets and almost strong H- κ -open sets, International Journal of Pure and Applied Mathematics, 117 (17), 2017, 7-13.

A.P. Ponraj and D. Sivaraj, Semi*-H-open sets, International Journal of Pure and Ap-plied Mathematics, 117(17), 2017, 1-6.

V.Renukadevi and Sheena Scaria, On hereditary classes in generalized topological spaces, J. Adv. Res. Pure. Math., 3(2)(2011), 21-30.

V.Renukadevi and K. Karuppayi, On modifications of generalized topologies via hereditaryclasses, J. Adv. Res.Pure.Math., 2(2)(2010),14 - 20.

P.Elavarasan and A.P.Ponraj, On κ_{gp}^* –Closed Sets, Design Engineering 8(2021), 10994-10997