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Abstract

The aim of this paper is extend the study of H —locally closed sets are defined in a generalized
topological space with a hereditary class, characterize this sets and discussits properties and
we discuss the properties of #£, —sets, Hz —sets, H . —sets and f;, —sets.It is established that
JH, —sets are I —locally closed set and Hz — sets are H —sets in generalized topological
space.
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1. Introduction

Let X be a nonempty set. A non-empty subfamily x of g(X) is called a
generalized topologyon X [1] if @ € k and k is closed under arbitrary union. The
pair (X,k) is called generalized topological space. Elements of k are called
Kk —open sets and the complement of a k —open setis called a k —closed set. The
largest k —open set contained in a subset A of X is denoted by int,(A)[3] and is
called the k —interior of A. The smallest k —closed set containing A is called the
k — closure of A and is denoted by cl,.(A) [3].

Throughout the paper, by a space, we always mean a generalized topological
space (X, k).A subset A is said to be k —dense if cl,(A) = X. A hereditary class
2 is a non empty family ofsubset of X such that A ¢ B, B € 3£ implies A €
[2]. For each subset A of X, a subset A*(#) or simply A* of X is defined by
A" (H) = {xe X |IMnA ¢ J for every M € k containing X}[2]. A generalized
topology « is said to be a quasi-topology [4] on X if M,N € k implies M N N € k.If
cly(A) = A N A for every subset A of X, with respect to k and a hereditary class
J of subsets of X then k" ={Ac X/ cly(X—A) =X—A} is a generalized
topology[2]. Elements of k* are called k* —open sets and the complement of a
Kk* —open set is called a k* —closed set. int,(A) is the interior of A in (X, k™).
Let (X,x) be a generalized topological space and # be a hereditary class of
subsets of X. If cl;(A) = X, then A is called k*-dense.

Definition 1.1. Let (X, k) be a generalized topology. A subset A of X is said to
be

(i) x —regular closed [2] if ¢l (int,(4)) = 4,
(i) Kk —semi open[2] if A c cl,.(int,(A)),
(i) Kk —a —open [2] if A c int,(cl,(int,(A))),
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(iv) Kk — B —open[2] if A c cl,(int,(cl.(4))),
V) B — 3 —open[3] if A c cl.(int,(cli.(A))).
(vi) a — J —open[3] if A cint,.(cli(int,.(A))),
(vii) pre—H —open [3] if A c int,(cl.(A)),
(viii) semi— 3 —open[3] if A c cly (int,(A)),
(ix) k — preopen [3] if A c int,.(cl,(4)).

The family of all k — semi open (k — f — open, a — I — open) sets is denoted by
0By, aFo(X)). Ifu e {k, o, B, m}, then int, and cl, are respectively, the interior
and closure operators with respect to the generalized topology p.

The complement of a k — semi open (resp. k — pre open, Kk —a —open, kK — 8 —
open, [ —H — open, a —H — open, pre — H — open, semi — I — open) set is
said to be a k—semiclosed (resp. k —pre closed, k — a — closed, k — 8 —
closed, p —H — closed, a — F — closed, pre — H — closed, semi — H —
closed) sets.

Lemma 1.2. [8] Let (X,k) be a generalized topological space and # be a
hereditary class of subsets of X. Then # is k — codense if and only if A c A* for
every A € k.

Lemma 1.3. [3] Let (X, k) be a generalized topological space and # be a hereditary
class of subsets of X. If A c A, then A* = cl,.(A) = cl;.(A).

Lemma 1.4. [8] Let (X,x) be a generalized topological space with hereditary
class #€. Then the following are equivalent.

(a) #H is strongly k — codense.

(b) M c M* for every M € k.

(c) Sc S* for every S € a(X).

(d) cl,, (M) = M* for every M € k.

Lemma 1.5. [3] Let (X, k) be a generalized topological space and A c X. Then the
following hold.

(a) int,(A) = Anint,(cl.(A)).
(b) cl;(A) = AU cl, (int,(A4)).

Lemma 1.6. Let (X,k) be a quasi-topological space and £ be a hereditary class
of subsetsof X. If A € X and M € k, then the following hold.

@ MNA* ¢ (M n A)"[8, Theorem 2.6].
by Mncl,(A) ccl,,(MnA) [8 Lemma 1.3].

Lemma 1.7. [3] Let (X,k) be a generalized topological space, # be a
hereditary class of subsets of X and A c B c X. Then the following hold.

(a) A" c B*.
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(b) A* < cl,.(4).
(c)Gek,GNAE€EH implesthatGNA* = @. Hence H* =X -G if H* € I.
(d) A* is k —closed for A c X.
(e) If F is k —closed, then F* c F.
(f) A™ = (A")" c A" for every A C X.
(9) X =X"if and only if k N = {0}.
2. H — Locally closed sets

Let (X, k) be a generalized topological space, H'be a hereditary class of subsets
of X and A be asubset of X. Then A is H —locally closed [2] if A = G NV, where
G and V are k* —perfect. The following Theorem 2.1 gives a characterization
of I —locally closed sets.

Theorem 2.1. Let (X,k) be a quasi-topological space and # be a hereditary
class of subsetsof X. Then the following are equivalent.

(a) Ais a I —locally closed set.
(b) A=Un A" for some k — open set U.

Proof: (a) = (b). If Ais a I —locally closed set, then A = U NV where U is k — open
and V is x* —perfect. A=UnNnV implies thatA*=((UnNV)". By Lemma 1.6(a),
Unv)*sU n V™. Visk* —perfect, implies that A*={UNV)* 22U NV =UNV =
A which implies that A € A*. Thus A c Vimplies that A*cV* =V and so A" =
A*NV. HenceUNA* =UNA" " NV)=UNV N A" =AnNA = A.

(b)=(a). Conversely, suppose that A =UnA* for some k —open set U.
Since A c A%, byLemma 1.7, A* € A c A. Therefore A* is k* —perfect and so A
is an # —locally closed set.

The following Example 2.2 shows that the condition quasi topology on x cannot be
droppedin Theorem 2.1.

Example 2.2. Consider the space (X,x) with the hereditary class 3 where
X={1,23,4}, k ={0,{1,2},{2,3},{1,2,3}} and H = {0,{2},{4}}. Clearly, k is
not a quasi-topology. If A ={2,3}, then A" = {3,4}. Clearly, A is H — locally
closed set. But for every x —open set U, A # U N A™.

The following Theorem 2.3 gives a characterizations of £ —locally closed sets.

Theorem 2.3. Let (X,x) be a quasi-topological space, £ be a hereditary class
of subsets of X and A be a subset of. Then the following are equivalent.

(a) A is H —locally closed.

(b) A= GnA" for some k —open set G.
(c) Ac A* and A* — A is k —closed.
(d) Ac A* and An (X —A") is k —open.
(e) A cA" and A cint(An (X —AY)).
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Proof: (a) = (b). Follows from Theorem 2.1.

(b) = (c). Suppose A =G N A* for some k —open set G. Clearly, A c A* and
A" —A=A"NX-A)=4A"nX—-—(GNAY)) =A"Nn(X—-G). Since A" is
k —closed, by Lemma 1.7(d), A* — A is k —closed.

(c)= (d). A" —A is k —closed implies that A*n (X —A) is k —closed
which implies that X — (A* N (X —A)) is k—open . Therefore A U (X —A") is
K —open.

(d) = (e) is clear.

(e) = (a). X—-A"=int,(X—A") cint,(AU (X —A4")) and SO
AU (X —A") is k—open, by hypothesis. SinceA=(AuX—-A4")NA", A is
I —locally closed.

Corollary 2.4. Let (X,k) be a quasi-topological space, H be a hereditary class
of subsets of X and A be a subset of. Then the following are equivalent.

I. Ais k* —dense in itself.
ii. Ais k™ —perfect.
. cl,.(A) = cl;.(A) = A"
Proof: i. Follows from Theorem 2.3.
ii. Follows from (a) and the fact that (A*)* < A™.
iii. Follows from Lemma 1.3.
The following Theorem 2.5 gives a characterization of £ —locally closed sets.

Theorem 2.5. Let (X,x) be a quasi-topological space, H be a hereditary class
of subsets of X and A be a subset of X. Then A is £ —locally closed if and
only if A is locally k —closed andA is k* —dense in itself.

Proof: If A is H —locally closed, then A is k* —dense initselfand A = G N A"
for some G € k. Since A” is k —closed, A is locally k —closed. Conversely, if A is
locally k —closed,then A = G N Fwhere G e kand F isk —closed.Ac F = A" c
F=A"NF=A". Now A is k" —dense in itselfimplies that A € A* and so
A=ANA"=(GNF)NA =GN(FNA)=GNA" Therefore, A IS
I — locally closed.

The following Example 2.6 shows that x* —dense in itself sets need not be
I —locally closed.

Example 2.6. Let X ={e f, g h}, k = {0,{h}, {e,9} {e, g, h}, X} and
H = {0,{g},{h}, {g,h}}. IfA={e}, then A is x*—dense itself but not
I —locally closed.

Definition 2.7. Let (X, k) be a generalized topological space, £ be a hereditary
class of subsets of X and A be a subset of Xis said to be an a4y —set if A=
UnNYV where Uis a—2 —open,and V is k* —closed. We will denote the family
of all agry —sets denoted by agzy(4) .
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Definition 2.8. Let (X,k) be a generalized topological space, # be a hereditary
class of subsets of X and A be a subset of X. A is said to be a weakly # —
locally closed set if A=Un V where U is k —open and V is a k* —closed set.
The family of all weakly H — locally closed setsis denoted by WH LC(X).

Clearly, every weakly H — locally closed set is an a4y —Set but not the converse
as shown bythe following Example 2.9.

Example 2.9. Consider (X, k) the quasi topological space where X = {p, q, r},
k =1{0,{p}.{p.7}, X} and H = {9,{q},{r},{q,7}}. IfA={p,q} then

int, (cl;‘;(intK(A))) = int, (cl,*c(int,c(p, q))) = int(cl;.(p)) = int(p,q,7)

= XD Aand so 4 is a —H —open and hence an agy —Set. But there is no
Kk —open set U such that A = U ncl;.(A) where cl;(A) = X. Hence A is not a
weakly # —locally closed set.

Theorem 2.10 below gives a characterization of az-y —Sets.

Theorem 2.10. Let (X,x) be a quasi- topological space, H be a hereditary class
of subsets of X and A be a subset of X. Then A is agy —set if and only if
A =Uncl;(A) for someagy —Set U.

Proof: If A is an agey —Set, then A=UnNV where U is a —3 —open and V
iIs k* —closed. Since AcV, cly(A) c clpy(V) =V and so cly(A)cUnV =AcC
Uncly(A) which implies that A = U n cl;.(4).

Conversely, suppose A = U n cl; (A) for some azey — SetU. Since cly(A)
is k* —closed, A is an azry —Se€t.

In the following Theorem 2.11, we give the relation of k* —perfect,
k —locally closed and k* —dense in itself subsets with H —locally closed
subsets.

Theorem 2.11. Let (X,k) be a quasi-topological space, H be a hereditary class
of subsets of X and A be a subset of X. If A is k™ —perfect, then A is H —locally
closed. The converse is true,if A is k* —closed.

Proof: If A is k* —perfect, then A = A" and so A =X NA = X n A" which implies
that A is € —locally closed.

Conversely, if A is # —locally closed, then A c A*. A is k" —closed
implies that A* < A. Hence A = A".

3. H, 4 and Hp, sets

Definition 3.1. Let (X, k) be a generalized topological space, H be a hereditary
class of subsets of X and A be a subset of X, A is said to be a 4, —set if A =
UnNV where Uis k —openand cly(int,.(V)) = X. The family ofal H 4; —sets is
denoted by F 4, (A).

Definition 3.2. Let (X, k) be a generalized topological space, H be a hereditary
class of subsets of X and A be a subsetof X. Ais saidto bea Hy, —setif A=Un
V where U is a — 3 —open and cly(int,.(V)) = X. The family of al #£ z,—sets is
denoted by H 51 (X). Clearly, 41 (X) € H 1 (X).
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The following Theorem 3.3 shows that #4; —sets and H 5, —sets are
nothing but a« — 3 —opensets in quasi topological spaces.

Theorem 3.3. Let (X,k) be a quasi-topological space and #H be a hereditary
class of subsetsof X. Then #p,(X) = aFo(X) = H 41 (X).

Proof: Suppose A € H(X). Then A=UnV where U is a —H —open and
cliy(int, (V)) = X. Thus V c X = int,.(cl;:(int(V))), since V e aFo(X).

Conversely, if U € ao(X),then U = U n X where cl;.(int, (X)) = X and
SO0 UEH(X). Hencea Ho(X) = Hp(X). Next suppose A € aHo(X).

Then A c int, (cl;‘;(intK(A))) and so

A = int, (cl,";(int,c(A))) n (X — (int,C (cl,*;(intK(A))) — A))

= int,(cli(int,c(A))) N ((X — int,(cli(int,, (A)))) U A)
Also,

cli(int, (X — int,(cli(int,c(A)))) U A))
D cli(int,. (X — intk(cly(int,.(A)))) vint,.(A))

— L (int,c (X - int, (cli(int,c (A))))) U el (int, CA))
> cl (int,c (X— cl,";(intK(A)))) U cli(int, . (A))

D int, (X — cl,t(int,c(A))) U cl,‘;(int,c(A))

> intye (X — eli(intic(4))) U eli(int (4)))
= int,.(X) = X.

Therefore, A € H ,;(X) which implies that #Hg;(X) = aHo(X) € H 51 (X).
Clearly, H 5, (X) © Hy,(X). This completes the proof.

Theorem 3.4. Let (X,kx) be a quasi-topological space with a hereditary
class H. If H is k —codense, then every k —open set is a H —locally closed set.

Proof: Suppose that U is k —open. By Lemma 1.3, Uc U* and soU* =U".
Since U =UnU", implies that U is H —locally closed set.

The following Lemma 3.5 is useful to prove the following Theorem 3.6.

Lemma 3.5. Let (X, k) be a quasi- topological space with a k —codense hereditary
class #H and A be a subset of X. If A is an #H — set, then int,_s(A) =
int,(A) where int,_s(A) is theinterior of A with respect to the family of all
a —H —open set a — H(X).

Proof: Clearly int,_4,(A) 2 int,(A).Since Aisan H . —set, A = U NV where
Uis K —open and int, (cli(int, (V))) = int, (V).

Now AcV implies that int, (cl,*c(intk(A))) C int, (Cl,*c(int,c(V)))
= int,(V ).Therefore int,_4(A) = Anint, (cl,"c(int,C 4 ))) cAn
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int,(V)cUn int, (V) = int, (U n V) = int, (A).
Therefore int,_4(A) < int,.(A). Hence int,_3(A) = int,(A).

Theorem 3.6. Let (X,k) be a quasi-topological space with a k —codense
hereditary class  and A be a subset of X. Then the following are equivalent.

(a) Ais k —open set.

(b) Ais an a —J —open set and a H —locally closed set.

(c) Ais apre— 3 —open set and a A —locally closed set.

(d) Ais apre— J —open set and an H 4 —set.

(e) Ais a pre — I —open set as well as H ¢ — set and an H 4 —set.

(f) Ais a pre —H —open set as well as H —set and a semi — 3 — open
set.

(g) A is a pre—JH —open set as well as H —set and int,(cl.(A)) c
cli(int,(A4)).
Proof: (a)=(b). If A is k—open, then A is a —HH —open. Since I is
k —codense, by Lemma 1.2, Ac A* and so A =An A". Therefore by Theorem
2.3, A is an I —locally closed set.

(b) = (c). Follows from the fact every a — H —open set is pre — # —open
set.

(c) = (d). If Ais an I —locally closed set then, by Theorem 3.3, A =G n
A* for some k —open set G. Since A c A%, A" = cl;;(A). Also A is a pre—
F€ —open  set implies that A cint(cli(4)) = int.(4*) and  so
A* c (int, (A"))* c (A")* c A*. Therefore A = (int,(4A"))".Hence A=G N A"
for some k —open set G and A* = (int,(A*))* and so Ais an #, — set.

(d)=(e). If Ais an F, —set, then A =G NV where G is k —open and
V = (int(V))". Now int, (cl,’;(intK(V))) — int,(int, (V) U (int(V))")
= int,(int, (V) UV) = int, (V). Therefore, A is a H — set.

(e)=>(f). If Ais an H 4, —set, then A=UnNV where U is k —open and
V = (int,(V))". Now A=UnV =Un(int,(V)) c (Unint,(V))
= (int, (U n V))* = (int, (A))" c cl (int,(A)) and so A is a semi—H —
open.

)= (9). If A is a semi—3H —open, then A c cli(int,.(A)).
Now int,(cl,.(A)) c int,.(cli;(cli(int,(A)))) = int,.(cl(int, (A))) =
cly(int, (A)). Therefore int,(cli.(A)) c cli(int,.(A)).

(9) = (a). Since A IS pre — 3 — open set,
A cint,(cli.(A)) = int, (int,(cl;.(A))) c int, (cl;(int,(A))) and so A is
a—H —open set and so int,_4(A) =A. By Lemma 3.5, it follows that
int,(A) = A and so A is k —open.
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